\qquad

Write each of the following as the sum of unit vectors; also, find the magnitude and the direction of the vector. Round your answers to the nearest hundredth.

1. Initial pt: $(-3,-5)$; Terminal point: $(5,1)$
Vector as sum
Magnitude:
Direction: of unit vectors:
2. Initial point: $(-3,11)$; Terminal point: $(9,40)$

Vector as sum	
of unit vectors:	Magnitude: Direction:

3. Initial pt: $(-4.2,5)$; Terminal point: $(3.7,-12.9)$

Vector as sum of unit vectors:

Magnitude:
Direction:
4. Initial pt: $(1.64,7.21)$; Terminal pt $(-2.33,3.86)$
Vector as sum
of unit vectors: Magnitude: Direction:

Answers:

1) $8 \vec{i}+6 \vec{j} ; \quad\|\vec{v}\|=10 ; \quad \theta=36.87^{\circ}$
2) $12 \vec{i}+29 \vec{j} ; \quad\|\vec{v}\|=31.38 ; \quad \theta=67.52^{\circ}$
3) $7.9 \vec{i}-17.9 \vec{j} ; \quad\|\vec{v}\|=19.57 ; \quad \theta=293.81^{\circ}$
4) $-3.97 \vec{i}-3.35 \vec{j} ; \quad\|\vec{v}\|=5.19 ; \quad \theta=220.16^{\circ}$

For each of the following, find:
(a) $-5 \vec{u}+2 \vec{v}$
(b) $\frac{1}{2} \vec{u}-\vec{v} \quad$ Write answers in the form of the original vectors.
5. $\mathbf{u}=\langle 5,3\rangle, \mathbf{v}=\langle-4,0\rangle$
6. $\mathbf{u}=\mathbf{i}+\mathbf{j}, \mathbf{v}=2 \mathbf{i}-3 \mathbf{j}$
7. $\mathbf{u}=-9 \mathbf{j}, \mathbf{v}=-6 \mathbf{i}+10 \mathbf{j}$
8. $\mathbf{u}=2 \mathbf{i}-\mathbf{j}, \mathbf{v}=-\mathbf{i}+\mathbf{j}$

Find a unit vector in the direction of the given vector. Write your answer in the same form as the original vector.
9. $\mathbf{u}=\langle 6,0\rangle$
10. $\mathbf{v}=\langle-4,4\rangle$
11. $\mathbf{v}=\langle 5,-12\rangle$
12. $\mathbf{v}=4 \mathbf{i}-3 \mathbf{j}$
13. $\mathbf{w}=\mathbf{i}-2 \mathbf{j}$
14. $\mathbf{w}=-3 \mathbf{i}$

More Resultant Practice: Find the magnitude of the resultant given the magnitude of \vec{v} and \vec{u} and the measure of the angle θ between the vectors. Also, find the measure of the angle that the resultant makes with \vec{u}. Round to the nearest hundredth.

$$
\|\vec{u}\|=18
$$

$$
\|\vec{u}\|=8.2
$$

1. $\|\vec{v}\|=23$

$$
\theta=37^{0}
$$

$$
\text { 2. } \begin{aligned}
\|\vec{v}\| & =4.7 \\
\theta & =83.9^{0}
\end{aligned}
$$

5) a) $\langle-33,-15\rangle$
b) $\langle 6.5,1.5\rangle$
6) a) $-\vec{i}-11 \vec{j}$
b) $-1.5 \vec{i}+3.5 \vec{j}$
7) a) $-12 \vec{i}+65 \vec{j} \quad$ b) $6 \vec{i}-14.5 \vec{j}$
8) a) $-12 \vec{i}+7 \vec{j}$
b) $2 \vec{i}-1.5 \vec{j}$
9) $\langle 1,0\rangle \quad$ 10) $\left\langle-\frac{\sqrt{2}}{2}, \frac{\sqrt{2}}{2}\right\rangle$
10) $\left\langle\frac{5}{13},-\frac{12}{13}\right\rangle$
11) $\frac{4}{5} \vec{i}-\frac{3}{5} \vec{j}$
12) $\frac{\sqrt{5}}{5} \vec{i}-\frac{2 \sqrt{5}}{5} \vec{j} \quad$ 14) $-\vec{i}$
more resultant practice: 1) $\|\vec{u}+\vec{v}\|=38.91 ; V=20.86^{\circ}$
13) $\|\vec{u}+\vec{v}\|=9.88 ; \quad V=28.23^{\circ}$
