Write each of the following as the sum of unit vectors; also, find the magnitude and the direction of the vector. Round your answers to the nearest hundredth.

1. Initial pt: (-3, -5); Terminal point: (5, 1)

Vector as sum of unit vectors: Magnitude:

Direction:

2. Initial point: (-3,11); Terminal point: (9,40)

Vector as sum of unit vectors: Magnitude:

Direction:

3. Initial pt: (-4.2,5); Terminal point: (3.7,-12.9)

Vector as sum of unit vectors: Magnitude:

Direction:

4. Initial pt: (1.64, 7.21); Terminal pt (-2.33, 3.86)

Vector as sum of unit vectors: Magnitude:

Direction:

Answers:

1)
$$8\vec{i} + 6\vec{j}$$
; $||\vec{v}|| = 10$; $\theta = 36.87^{\circ}$

1)
$$8\vec{i} + 6\vec{j}$$
; $||\vec{v}|| = 10$; $\theta = 36.87^{\circ}$ 2) $12\vec{i} + 29\vec{j}$; $||\vec{v}|| = 31.38$; $\theta = 67.52^{\circ}$

3)
$$7.9\vec{i} - 17.9\vec{j}$$
; $\|\vec{v}\| = 19.57$; $\theta = 293.81$ °

3)
$$7.9\vec{i} - 17.9\vec{j}$$
; $||\vec{v}|| = 19.57$; $\theta = 293.81^{\circ}$ 4) $-3.97\vec{i} - 3.35\vec{j}$; $||\vec{v}|| = 5.19$; $\theta = 220.16^{\circ}$

(a)
$$-5\overrightarrow{u} + 2\overrightarrow{v}$$

(a)
$$-5\overrightarrow{u}+2\overrightarrow{v}$$
 (b) $\frac{1}{2}\overrightarrow{u}-\overrightarrow{v}$ Write answers in the form of the original vectors.

5.
$$\mathbf{u} = \langle 5, 3 \rangle$$
, $\mathbf{v} = \langle -4, 0 \rangle$

6.
$$\mathbf{u} = \mathbf{i} + \mathbf{j}$$
, $\mathbf{v} = 2\mathbf{i} - 3\mathbf{j}$

7.
$$\mathbf{u} = -9\mathbf{j}$$
, $\mathbf{v} = -6\mathbf{i} + 10\mathbf{j}$

8.
$$\mathbf{u} = 2\mathbf{i} - \mathbf{j}, \ \mathbf{v} = -\mathbf{i} + \mathbf{j}$$

Find a unit vector in the direction of the given vector. Write your answer in the same form as the original vector.

9. **u** =
$$\langle 6, 0 \rangle$$

10.
$$\mathbf{v} = \langle -4, 4 \rangle$$

11.
$$\mathbf{v} = \langle 5, -12 \rangle$$

12.
$$\mathbf{v} = 4\mathbf{i} - 3\mathbf{j}$$

13.
$$\mathbf{w} = \mathbf{i} - 2\mathbf{j}$$

14.
$$\mathbf{w} = -3\mathbf{i}$$

More Resultant Practice: Find the magnitude of the resultant given the magnitude of \overrightarrow{v} and \overrightarrow{u} and the measure of the angle θ between the vectors. Also, find the measure of the angle that the resultant makes with u. Round to the nearest hundredth.

$$\left\| \overrightarrow{u} \right\| = 18$$

$$1. \quad \left\| \overrightarrow{v} \right\| = 23$$

$$\theta = 37^{\circ}$$

$$\left\| \overrightarrow{u} \right\| = 8.2$$

$$2. \quad \left\| \overrightarrow{v} \right\| = 4.7$$

$$\theta = 83.9^{\circ}$$

5) a)
$$\langle -33, -15 \rangle$$
 b) $\langle 6.5, 1.5 \rangle$

5) a)
$$\langle -33, -15 \rangle$$
 b) $\langle 6.5, 1.5 \rangle$ 6) a) $-\vec{i} - 11\vec{j}$ b) $-1.5\vec{i} + 3.5\vec{j}$

7) a)
$$-12\vec{i} + 65\vec{j}$$
 b) $6\vec{i} - 14.5\vec{j}$ 8) a) $-12\vec{i} + 7\vec{j}$ b) $2\vec{i} - 1.5\vec{j}$

8) a)
$$-12\vec{i} + 7\vec{j}$$
 b) $2\vec{i} - 1.5\vec{j}$

9)
$$\langle 1,0 \rangle$$
 10) $\left\langle -\frac{\sqrt{2}}{2},\frac{\sqrt{2}}{2} \right\rangle$ 11) $\left\langle \frac{5}{13},-\frac{12}{13} \right\rangle$ 12) $\frac{4}{5}\vec{i}-\frac{3}{5}\vec{j}$ 13) $\frac{\sqrt{5}}{5}\vec{i}-\frac{2\sqrt{5}}{5}\vec{j}$ 14) $-\vec{i}$

more resultant practice: 1)
$$\|\vec{u} + \vec{v}\| = 38.91$$
; $V = 20.86^{\circ}$ 2) $\|\vec{u} + \vec{v}\| = 9.88$; $V = 28.23^{\circ}$

2)
$$\|\vec{u} + \vec{v}\| = 9.88$$
; $V = 28.23^{\circ}$