\qquad
**Simplify all roots and fractions; also round all decimals to the hundredth place.

For each of the following points find the component form, magnitude, and direction of each vector:

1. Point S is at $(-3,-2)$ and T is at $(5,-7)$. Find $\overrightarrow{S T}$.
2. Point F is at $(-5,2)$ and G is at $(-8,15)$. Find $\overrightarrow{F G}$.
3. Point J is at $(6,-7)$ and K is at $(-9,-11)$. Find $\overrightarrow{J K}$.
4. Point L is at $(0,6)$ and M is at $(2,2)$. Find $\overrightarrow{L M}$.
5. Point Q is at $(1.9,-4.7)$ and R is at $(6.8,-12.3)$. Find $\overrightarrow{Q R}$.

For each of the following use the triangle or parallelogram method to find: a) the magnitude of the resultant, and b) the angle the resultant makes with vector $\overrightarrow{\boldsymbol{d}}$. (SHOW ALL WORK)
6. $\|\vec{c}\|=13,\|\vec{d}\|=8$ and the angle between the vectors is 97°
7. $\|\vec{c}\|=4,\|\vec{d}\|=11$ and the angle between the vectors is 38°
8. $\|\vec{c}\|=15,\|\vec{d}\|=17$ and the angle between the vectors is 56°

1) $\langle 8,-5\rangle ; \sqrt{89} ; 327.99^{\circ}$
2) $\langle-3,13\rangle ; \sqrt{178} ; 102.99^{\circ}$
3) $\langle-15,-4\rangle ; \sqrt{241} ; 194.93^{\circ}$
4) $\langle 2,-4\rangle ; 2 \sqrt{5} ; 296.57^{\circ}$
5) $\langle 4.9,-7.6\rangle ; 9.04 ; 302.81^{\circ}$
6) $14.41 ; 63.56^{\circ}$
7) $14.36 ; 9.91^{\circ}$
8) $28.27 ; 26.10^{\circ}$

For the following problems, write each as a sum of unit vectors; also find the a) magnitude and b) direction of each.
9. Initial Point $(-8,15)$, Terminal Point $(0,6)$
10. Initial Point $(2,-6)$, Terminal Point $(-1,-9)$
11. Initial Point (3.7, 1.2) , Terminal Point (6.5, 8.5)
12. Initial Point (2.6, -6) , Terminal Point $(7,3)$

Find: a) $-\frac{1}{2} \overrightarrow{\boldsymbol{u}}-\mathbf{5} \overrightarrow{\boldsymbol{v}}$ and b) $-\mathbf{3} \overrightarrow{\boldsymbol{u}}+\mathbf{6} \overrightarrow{\boldsymbol{v}}$ for each of the following
13. $\vec{u}=\langle 4,-4\rangle$ and $\vec{v}=\langle 6,9\rangle$
14. $\vec{u}=2 \vec{\imath}-3 \vec{\jmath}$ and $\vec{v}=-\vec{\imath}+5 \vec{\jmath}$

For the following find the unit vector in the direction of the given vector:
15. $\vec{v}=\langle-3,9\rangle$
16. $\vec{v}=\langle 8,2\rangle$
17. $\vec{w}=<-5,5>$
18. $\vec{w}=3 \vec{\imath}+3 \vec{\jmath}$
19. $\vec{v}=-\frac{1}{2} \vec{\imath}+\frac{3}{2} \vec{\jmath}$
20. $\vec{w}=-7 \vec{\jmath}$
9) $8 \vec{i}-9 \vec{j} ; \sqrt{145} ; 311.63^{\circ}$
10) $-3 \vec{i}-3 \vec{j} ; 3 \sqrt{2} ; 225^{\circ}$
11) $2.8 \vec{i}+7.3 \vec{j} ; 7.82 ; 69.02^{\circ}$
12) $4.4 \vec{i}+9 \vec{j} ; 10.02 ; 63.95^{\circ}$
13) $\langle-32,-43\rangle ;\langle 24,66\rangle$
14) $4 \vec{i}-\frac{47}{2} \vec{j} ;-12 \vec{i}+39 \vec{j}$
15) $\left\langle\frac{-\sqrt{10}}{10}, \frac{3 \sqrt{10}}{10}\right\rangle$
16) $\left\langle\frac{4 \sqrt{17}}{17}, \frac{\sqrt{17}}{17}\right\rangle \quad$ 17) $\left\langle\frac{-\sqrt{2}}{2}, \frac{\sqrt{2}}{2}\right\rangle \quad$ 18) $\frac{\sqrt{2}}{2} \vec{i}+\frac{\sqrt{2}}{2} \vec{j} \quad$ 19) $-\frac{\sqrt{10}}{10} \vec{i}+\frac{3 \sqrt{10}}{10} \vec{j} \quad$ 20) $-\vec{j}$

